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A mathematical analysis of the behaviour of small disturbances to Poiseuille 
flow in a circular pipe can be tackled in two different ways. In  the first of these, 
the disturbance velocity is expressed as a combination of terms, each of which 
represents a disturbance of a fixed wavelength that decays with time. In  the 
second approach, each term which contributes to the disturbance velocity repre- 
sents a disturbance of a fixed frequency that decays with downstream distance. 
The latter method is given more prominence in this paper, since, in experiments in 
which disturbances are introduced into the flow in a controlled manner, a constant 
frequency-generating device is commonly used. 

In  the main, it  is assumed not only that the Reynolds number of the Poiseuille 
flow is large, but that the frequency, f, of the disturbance is large compared with 
the frequency, v/a2, where a is the radius of the pipe and v the kinematic viscosity 
of the fluid. The mathematical problem is then of the singular perturbation type, 
and the disturbances with the smallest damping rates are confined to thin layers. 
A simple, but crude, analysis shows among other things that the radius a t  which 
the disturbance velocity is a maximum is roughly that a t  which the velocity of 
the Poiseuille flow is equal to the frequency, f, times the disturbance wavelength. 
Eigenfunctions are found precisely for the two limiting cases in which, as f d / v  
tends to infinity, the disturbance becomes confined to a thin layer situated 
(a) near the centre of the pipe, and ( b )  near the wall. The eigenfunctions are 
presented graphically in such a way that immediate comparison can be made 
with some of Leite’s experimental results. Good agreement is found. A real 
disturbance, however, is made up of several modes, each of which is damped a t  
a different rate with increasing downstream distance. Possible changes in the 
form and apparent damping rate of a disturbance are discussed in terms of 
a particular case. 

Next, an asymptotic procedure is carried out, which proves to give a good 
approximation to the eigenvalues and eigenfunctions over a wide range of 
conditions. From the eigenvalue equation so obtained it is possible to calculate 
the wave-speed and damping rate for each mode as a function of the non- 
dimensional frequency, fu2/v, and the Reynolds number. For simplicity, the 
calculations are carried out for the case in which the Reynolds number is infinite, 
so that the eigenvalues depend only on fa2/v. For each mode it is found that the 
damping rate is an increasing function of the frequency for high frequencies, but 
as the frequency is decreased the damping rate approaches a limiting value. 
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These limiting values can be quite small for the Reynolds numbers, R, at which 
experiments are normally carried out, and for some low-frequency disturbances 
the distance required for the disturbance amplitude to be reduced by half is as 
much as R/100 diameters. 

Historical development 

This paper is concerned with the stability to small disturbances of Poiseuille flow 
in a pipe, a problem that has been of as great an interest as it has been elusive in 
its solution since the classical experiments of Osborne Reynolds (1883), which 
showed that flow in a pipe can become unsteady when the Reynolds number 
exceeds a certain value, of about 2000. This result prompted Rayleigh (1880) to 
begin a series of theoretical investigations into the stability to small disturbances 
of various fluid flows. Rayleigh (1892) thought a t  first that the mechanism of 
the observed instability must be primarily an inviscid one, the flow being stable 
at smaller Reynolds numbers only in consequence of the steadying effect of 
viscosity. However, his analysis for inviscid fluids led to the conclusion that the 
flow is not unstable, thus creating something of a paradox. Kelvin’s (1887) 
resolution for some related problems was to support Reynolds’s (1883) ‘idea that 
the condition might be one of instability for disturbances of a certain magnitude, 
and stable for smaller disturbances’. Rayleigh (1892) himself suggested that 
inviscid theory might be inapplicable; for instance, the condition that there is 
finite slip at  the walls is violated no matter how small is the viscosity. Subsequent 
work (Lin 1955, ch. 3) has shown that Rayleigh’s idea explains the instability of 
plane Poiseuille flow, but further experiments by Taylor (unpublished), Ekman 
(1910) and others for flow in a circular pipe have shown that, by taking sufficient 
care with entry conditions, the onset of instability can be delayed to very high 
Reynolds numbers (40,000 and more), which seems to support the finite 
amplitude explanation for instability in the pipe. The theoretical work that has 
been done supports this idea insofar as only stable solutions have been found. 

Sex1 (1  927) appears to be the first to take account of viscosity in this problem, 
in considering the stability of axisymmetric disturbances. However, for reasons 
of mathematical simplicity, he applied some artificial boundary conditions, so 
that no reliance can be made on his conclusions. Pretsch (1941) noted that if the 
disturbance is confined to a thin layer near the wall of the pipe, the problem 
becomes identical with that of disturbances near the wall in plane Couette flow. 
Pekeris (1948) found a different set of solutions for which the disturbance was 
mainly confined to a thin region near the centre of the pipe. Corcos & Sellars 
(1959) took account of both the limiting class of solutions found by Pekeris, and 
the class of solutions indicated by Pretsch. However, on this basis they reached 
the conclusion that only a finite number of eigenfunctions exist, which would 
imply that the normal mode method so frequently used in stability problems is in- 
adequate for this case, for how can an arbitrary initial disturbance be represented 
in terms of a finite number of eigenfunctions? Schensted (1960) has since resolved 
the problem and shown that, in the case of axisymmetric disturbances, not only 

1. Introduction 
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does an infinite set of eigenfunctions exist but the set is complete. This paper will 
be concerned primarily with the calculation of eigenvalues and eigenfunctions so 
that comparison can be made with experiment. 

T h e  type of problem considered 
It is desired in this paper to compare theoretical predictions about the behaviour 
of small disturbances to Poiseuille flow in a pipe with the results of suitable 
experiments. To find how a disturbance behaves, one needs to know sufficient 
boundary and initial conditions to specify the solution of the disturbance equa- 
tions uniquely in the region of interest. In  many experiments, disturbances are 
introduced into the flow in a rather random and unknown way so that little can 
be said about their behaviour. Obviously, experiments in which disturbances 
are introduced into the flow in a specified way will be more useful for comparison 
purposes. Such experiments have been carried out by Leite (1956, 1959) in con- 
junction with the theoretical work of Corcos & Sellars (1959). Since sinusoidally 
varying disturbances are usually considered in mathematical treatments of the 
problem, the disturbances were generated by a mechanism the electrical input 
into which had a sinusoidal variation with time. After a while, the transients 
produced by starting the disturbance generating device die away, and the 
components of the disturbance velocity a t  any point then vary sinusoidally with 
time also, and with the same frequency as the input into the generating device. 
This paper will be concerned with the properties of such disturbances. 

The corresponding mathematical problem can be expressed as follows. Let 
(x, r ,  6') be cylindrical polar co-ordinates such that r = 0 represents the centre-line 
of the pipe and x increases in the downstream direction, and let t be the time. 
For time t < 0 we suppose that the Poiseuille flow is undisturbed, and that at  
t = 0 a disturbance generating device comes into operation in a certain finite 
region. This may be regarded as equivaIent to a force which is equal to the real 
part of f (2, r ,  6') e-iwt, 

where f is a generalized function, zero outside a certain finite region. The problem 
is to find the disturbance velocity produced in this way for times large enough 
for the transients to have died away. 

Representation of the disturbance velocity 
(i) 8-dependence. The disturbance velocity can be expressed as a Fourier series 

in 8 of the form W 

u(x, r ,  8, t )  = C u,(x, r ,  t )  cine. 

The equations being linear, each term of the series can be considered separately, 
and the equations for each u,(x, r ,  t )  will not involve 6' explicitly. 

(ii) (x, r ,  t)-dependence. There are two ways which seem appropriate for the 
representation of u,(z, r ,  t ) .  

(a )  T h e  timewise problem. One method is to express each u, (x , r , t )  as a 
Fourier integral over the range of wave-numbers, a, viz. 

n = - m  

ii,(~, t ;  a)  eiaxdx. 

10-2 
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Each u,(r, t ;  a)  satisfies differential equations involving only derivatives with 
respect to r and t and the following conditions are sufficient to determine ii, 
for all t > 0: that ii, vanishes on the walls of the pipe, and that the initial value 
of ii, is given. 

One way of solving the equation for i in(r,  t ;  a )  is to take Laplace transforms 
with respect to time of each side of the equation, and thus find the Laplace 
transform with respect to time of ii,. The function ii,(r, t ;  a)  will then be given 
by the usual integral for the inverse transform, and this integral is generally 
found to be equivalent to a sum of residues. Alternatively, the residues corre- 
spond to eigenfunctions which can be found directly by looking for solutions of 
the form 

where a is given, /3 is one of the complex eigenvalues to be determined, and u(r) 
vanishes on the wall of the pipe. The problem of looking for these eigenfunctions 
and eigenvalues will be termed the ‘timewise’ eigenvalue problem, since the 
solution corresponding to each eigenvalue represents a disturbance of a given 
wave-number which grows or decays with time. 

Notice that u(r)  is a vector eigenfunction, but, because of the continuity 
equation, is equivalent to two scalar eigenfunctions rather than three. In  the 
case of axisymmetric disturbances (n = 0), the radial and azimuthal components 
of u(r) satisfy independent equations and to each of those components corre- 
sponds a different set of eigenfunctions. Schensted (1960) has shown that the 
set corresponding to the radial component is complete. 

(b )  The spacewise problem. The method which seems the most useful for 
comparison with experiment has the known sinusoidal dependence on time built 
into the solution from the start. The method is suggested by the form of ( l . l ) ,  
which has the required time dependence if /3 is taken to be equal to the angular 
frequency w ,  of the generating device. Then, for given n, a becomes an eigenvalue 
to be sought. The problem of looking for eigenvalues and eigenfunctions of this 
type will be termed the ‘spacewise’ eigenvalue problem since the solutions 
corresponding to each eigenfunction represents a disturbance of a fixed frequency 
which grows or decays with increase of the space variable, x (cf. Watson 1962). 

It is important to consider the boundary conditions appropriate to the space- 
wise problem, particularly since they are a little more complicated than those for 
the timewise problem. For this purpose, the spacewise problem can be split up 
into two stages, the first being to write u, in the form 

u,(x, r ,  t )  = exp ( - iwt) iin(x, r ;  w ) ,  

so that 6, satisfies equations involving only derivatives with respect to x and r.  
These equations are elliptic, and so require for their solution that fin be specified 
on a closed surface, such as the one formed by the wall of the pipe and two 
bounding cross-sections, x = constant. Allowing the downstream cross-section 
to approach x = co, it  is seen that the following boundary conditions are appro- 
priate: that 3, vanishes on the walls of the pipe, that 5, is as specified for a given 
value of x, and that the behaviour of a, as x + 00 is consistent with the fact that 
the disturbance generator is upstream of cross-sections represented by these 
large values of x. 

u(x,r,O,t) = u(r)exp(inB+im-i/?t), (1.1) 



Sm.all disturbances to Poiseuille $ow 149 

The last condition represents a complication which does not appear in the 
timewise problem, and is similar to the radiation condition that is required in 
many wave-motion problems. The restriction is necessary because disturbances 
can be propagated upstream as well as downstream, and it is necessary to 
eliminate those solutions which correspond to disturbances propagating up- 
stream from x = 03. Such disturbances, as one might expect, are quickly 
damped out, and it is not difficult in practice to decide which solutions have the 
right behaviour as x + co. 

The solutions given most attention below, however, are of the singular 
perturbation type, so that a boundary-layer approximation can be made, the 
changes with downstream distance being slow compared with the changes across 
the thin annular layer to which most of the disturbance is confined. As a con- 
sequence, the equations become parabolic instead of elliptic and can be treated 
in much the same way as timewise solutions. 

Notice again that u(r) is a vector eigenfunction. For the spacewise problem it 
is equivalent to three scalar eigenfunctions, since the continuity equation does 
not reduce the number of independent components as it does in the timewise 
problem. This paper will be devoted to finding spacewise eigenfunctions, as they 
may readily be compared with experimental results. Of these eigenfunctions, 
the ones of most interest will be those corresponding to the smaller damping 
rates. Those corresponding to large damping rates will generally be ignored. 

2. Equations for a small disturbance to flow in a pipe 
Some physical considerations 

In  discussing the stability of unidirectional flows in two dimensions, it  is useful 
to consider the vorticity associated with certain material lines of fluid (Lin 1955, 
34.4). For the axisymmetric motions we are to consider, the equivalent dis- 
cussion is that of material rings of fluid, the centres of the rings being on the axis. 
A given material ring will remain a ring of this type throughout its motion. 
Such rings coincide with vortex lines, and for motion in an inviscid fluid the 
vorticity associated with any material ring varies in proportion to its circum- 
ference. In  other words, the quantity, 2, that is equal to the vorticity associated 
with the ring divided by its radius, remains constant for a material ring of fluid. 
Now, the value of Z at any fixed point can be divided into a mean part, Z, and 
a fluctuating part, Z,, z = ZfZ,, 
where the bar denotes the mean with respect to time at  a fixed point. For suffici- 
ently small disturbances, Z can be identified with the value of Z for the basic 
flow, and this is a function only of r .  Thus as the radius of a material ring alters, 
Z will change and so correspondingly 2, must change in order to keep Z a con- 
stant. This represents a mechanism for the exchange of vorticity between the 
mean flow and the disturbance. The special feature of Poiseuille flow, however, is 
that Z is independent oft, and so this exchange mechanism does not operate for 
very small disturbances. 

In  a viscous fluid, the effect of viscosity in the interior of the fluid will be to 
damp out disturbances. However, there is another interchange mechanism 
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which operates a t  the solid boundary in a way that apparently cannot be deter- 
mined a priori. This mechanism corresponds to the fact that the value of 2, at 
the wall can change in a viscous fluid, which implies that vorticity can be 
generated by or absorbed by the wall. It would be very surprising if this effect 
alone were responsible for instability, as the wall is not a source of energy, and 
this leads one to suspect that all small disturbances will be stable. However the 
existence of the exchange mechanism at the wall prevents what would be a 
simple proof of stability. The same difficulty arises in a paper by Sex1 & Spielberg 
(1958) in which lack of knowledge of the quantity (9) in their paper is equivalent 
to the lack of knowledge of the amount ofvorticity generated by or absorbed by 
the wall in the above discussion. 

Non-dimensional form of the equa,tions 

The equations can be put in non-dimensional form by choosing as the respective 
units of velocity, length and density the maximum velocity, Urn,,., of the basic 
flow, the radius, a, of the pipe, and the density, p, of the fluid. Then the kinematic 
viscosity of the fluid can be replaced in the equations by the reciprocal of the 
Reynolds number, R, defined by 

R = Umax.a/v. 

The basic Poiseille flow will have cylindrical polar components 

(1--r2, 0, 01, 

and it has been seen that the velocity perturbation can be expressed in terms of 
particular velocity perturbations of the form (1.1). Let the cylindrical compo- 
nents of u(r) be u(r) ,  iv(r),  w(r) ,  where the factor i is introduced because of the 
phase difference of 4 7 ~  between the radial component and the other components, 
which follows from the continuity equation. 

Attention will be restricted to axisymmetric disturbances (n = 0 ) ,  because 
such disturbances are simpler to handle theoretically while showing many of the 
features of more general disturbances, and the disturbances generated in Leite’s 
experiments were mainly axisymmetric. The simplifying feature in the case of 
axisymmetric disturbances is that the sixth-order set of equations satisfied by 
the velocity components can be divided into two independent sets of equations, 
one set being of the fourth order and the other of the second. The second-order 
equation, which involves only the azimuthal component, w, of the velocity is 

[aR( 1 - r2) -pR] w = - i(w” + w’/r - a2w). 

The behaviour of this component follows very simply from the analysis to follow, 
since w satisfies an equation very similar to (2.4) below. For the purpose of 
studying the other components, however, w can be taken to be zero, and this 
will be assumed in most of the following discussion. The fourth-order set of 
equations involves only the axial and radial components of disturbance velocity, 
and these components can be expressed in terms of a disturbance stream function. 
For an eigenmode, this will have the form 

$(r)  eiaz-@’t, (2.1) 
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and the components u and v will be given by 

The fluctuating part, Z,, of Z will have the corresponding form 
u = #‘I?-, v = -a#lr. 

c(r) eiax-ij?I 
3 

where r2c = - (q5” - #‘/r - a”). (2.3) 

[aR(1-r2)-,6R]c = - i (r+36‘/r-a2Q, (2.4) 

The equation satisfied by 

and the four boundary conditions are (i) that there is no source of fluid on the 
axis, that is q5 = 0 at r = 0 (this is equivalent to two conditions); (ii) that the 
velocity vanishes at the wall, i.e. u = v = 0 at r = 1. 

For given a, the solutions of the above equation satisfying the above boundary 
conditions are timewise eigenfunctions with corresponding eigenvalues, p. For 
given p, the solutions of the above equation satisfying the above boundary 
conditions are spacewise eigenfunctions with corresponding eigenvalues, a. In  
the latter case, however, there is also a condition on a required to give the 
correct behaviour as x + CC. 

The function # does not appear explicitly in (2.4) because of the lack of the 
vorticity exchange mechanism discussed previously. Notice also that, as in 
other problems for which there is an imposed frequency or length scale, the 
relative importance of the viscous terms is not represented by the Reynolds 
number alone, but through the parameter ,6R in the case of an imposed frequency, 
and through the parameter aR in the case of an imposed axial length scale. If 
the imposed frequency is f,  then pR is described in terms of dimensional quantities 

(given in a different form by Sex1 1927) is 

by the relation pR = 2 7 ~ f a ~ / v ,  

151 

(2.2) 

and so measures the imposed frequency in relation to the quantity a2/v, which 
has the dimensions of frequency. 

3. General discussion of the types of solution 
Inviscid solutions of the spacewise problem 

If the effect of viscosity is small throughout the fluid, equation (2.4) reduces to 
the inviscid equation, c = 0, or by (2.3) 

q5”-#’/r-a2# = 0, 

and the boundary condition to be applied at the wall is that of no flux across the 

wall, namely #(1) = 0. 

The regularity condition to be applied at the centre can be written 

$(O) = 0. 

For the timewise problem where a is real and given, there are no solutions to the 
inviscid problem, but in the spacewise problem where a is a complex eigenvalue 
to be found, there is a complete (scalar) set of solutions with a such as to give 
an appropriate behaviour for x + co. These solutions are given by 

q5 = r4(gmr) ,  a = igm, where m = 1,2,3,  ..., 
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a;, being the zeros of J1(c), that is 

These solutions will not be considered further since the least damped of the 
disturbances represented here suffers a loss of amplitude by a factor of 2000 in 
a downstream distance of one diameter. 

It is worthwhile, however, to take stock of the number of eigenvalues found, 
and the number yet to be found. It has already been remarked that the set of 
spacewise vector eigenfunctions is equivalent to three scalar sets of eigen- 
functions. For the axisymmetric case, one scalar set corresponds to the azi- 
muthal velocity component, and another scalar set for large values of PR is the 
set of inviscid solutions just found. This leaves one more set to be found, for 
large values of PR, and since we have found all the inviscid solutions, the remain- 
ing set must be of the singular perturbation type, in which the viscosity is 
important in some thin layer, or for motion of a small length scale. 

For the timewise problem, the set of vector eigenfunctions is equivalent to 
only two scalar sets of eigenfunctions, since the continuity equation cannot 
allow the three components of velocity to be chosen independently at a given 
time. For axisymmetric disturbances, one set corresponds to the azimuthal 
velocity component and since there are no inviscid solutions, the other set must, 
for large aR, comprise solutions of the singular perturbation type. 

J,(c,) = 0. 

Singular perturbations or ‘ vuiscous ) solutions 

The inviscid solutions correspond to the vorticity being everywhere small. In 
contradistinction, the ‘singular perturbation ’ or ‘viscous ’ solutions must be 
such that the vorticity is not small, a t  least in some part of the flow. In the 
spacewise problem, for example, the part of the flow in which the vorticity is 
small could be a thin layer whose width depends on the large parameter, PR, or 
alternatively, the vorticity could vary rapidly with radius, the variations being 
on a small length scale dependent on /3R. 

It is worthwhile at this stage to consider the relation between the position of 
this layer and the wave-number, a,, of the disturbance produced. For instance, 
in some of Leite’s experiments, disturbances are produced by oscillations of a 
circular airfoil, of radius, ro, say. In  that case one would expect that the maxi- 
mum disturbance not too far downstream of the airfoil is situated close to ro, and 
since the stream is sweeping past the airfoil with velocity U(r,,), it  is natural to 
expect the disturbance to have its wave-number, a,, given by 

a r  u(rJ = P* (3.1) 
To put the argument another way round, a singular perturbation type of eigen- 
mode with wave-number a, can be expected to have the disturbance maximum 
close to the points, ro, given by (3.1). In  practice, of course, there will be an 
infinite number of possible modes, and those stimulated the most can be expected 
to be the ones with maxima close to the radius, ro, and with wave-numbers (x, 
that satisfy (3.1) the most closely. 

Now let us examine equation (2.4) for the vorticity and see to what extent 
these ideas are substantiated. Equation (2.4) is a second-order equation 
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containing a large parameter, and as such the behaviour of its solutions in certain 
regions of the complex r-plane are well known (Erddyi 1956, ch. 4). The equation 
has singularities at two points only; r = 0 which is a regular singularity, and 
r = 00 which is an essential singularity. When, however, the parameter contained 
in the equation is large, two other points become important. They are called 
transition or turning points and are the points where the large coefficient of 6 
in (2.4) is zero, that is the points are given by r = k rc, where 

r: = 1 -PI.. (3.2) 

If we define re as the root which has positive real part, it  is only the transition 
point at r = + r, that need concern us. In  hydrodynamic stability problems it is 
usually referred to as the critical point, and we will use this name for the single 
point r,. It should be noted in passing that if la1 is comparable to R, the critical 
point will not be a t  the position given by (3.3) since the coefficient, ia2, of 5 on the 
right-hand side of (2.4) is as important as those on the left-hand side. If this 
term is included we find that 

r: = 1 - p/a - ia/R. 

Disturbances of such large wave-number, however, are damped out very rapidly 
indeed, so are not of great physical interest and will be ignored. 

Certain asymptotic approximations to solutions of (2.4) are well known 
(ErdBlyi 1956, ch. 4). They are given by 

where 

and - &r < arg g' < in-, and are valid in certain regions away from the singular 
points and the transition points. For instance, it is assumed that 19'1 is large, 
which requires that r should not be too close to re. Now, from the physical point 
of view, i t  is the behaviour of the solutions for r real and such that 0 < r < 1 that 
matters, so let us see how the approximations (3.3) behave for this range of r .  
Since g' is large in magnitude, 5 can be expected to vary rapidly with r ,  and so 
also will 161 except where g' is approximately real. The point, r,, where g' is real, 
is important, as i t  marks a maximum or minimum of 151. By the definition (3.4) 
of g', the point rm is given by 

a, being the real part of a. This formula is in fact identical for Poiseuille flow 
with the formula (3.1) which gives the point where the disturbance might be 
thought to be a maximum on physical grounds. Note also that the imaginary 
part of (3.4) shows that 

and so ai is positive, g' being real at the point r,. This means that these solutions 
with a local maximum of 161 are damped, as can be expected from the 'physical 
considerations ' of 9 2 when boundary values have no effect in determining the 
solution. In  fact, given that a t  any cross-section 151 has a maximum value at 
a certain radius, one would expect vorticity to be diffused radially away from 
the maximum, this leading to a reduction in its magnitude with increasing 
distance from the source of the disturbance. 

(3.5) r; = 

aiR( 1 - r k )  = 9'2, (3.6) 
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Now there are a number of conditions that need to be fulfilled for (3.3) to be 
a valid approximation near r = r,. One is that rm should not be too close to 
r = 0, which is a singularity of the equation, and another is that r, should not 
be too close to the boundary r = 1 where boundary conditions will be important 
and also since, by (3.6), g' will be small a t  r = r,. These two cases will be examined 
in detail in $04 and 5. Another condition which should be satisfied is that g' 
should be large at r = r,, that is that r, should not be too close to the zero 
re of 9'. In  practice, it  is found that, under the conditions of Leite's experiments 
a t  least, rm is too close to rc for (3.3) to be a very good approximation at  that 
point, but is far enough away for (3.5) to give a reasonable estimate of the 
position of the maximum, and to give a good idea of the way 6 varies. For this 
reason, i t  is worth examining further the properties of the disturbances that 
(3.3) represent. The way that this type of approximation to the solution should 
be modified near the critical point will be discussed in $6. 

Behaviour of the disturbance velocity near r = r, 

The disturbance velocity components corresponding to the vorticity given by 
(3.3) can be found by integration. First, q5 can be found by using (2.3), which 
gives to the first order 

The inviscid part of the solution varies slowly compared with the viscous part, 
and will be determined by boundary conditions applied at  points where we 
have assumed that the viscous part is relatively small. This means that the 
inviscid part of the solution will be relatively unimportant in the layer to which 
the disturbance is mainly confined, and so can be ignored there. Thus (2.2) gives 

# = rig'-g eiQ + an inviscid solution. (3.7) 

u = #' / r  M ir-+g'-%eig, (3.8) 

and IuI is also a maximum near r = rm. 
To find how u changes near r = r,, g and g' can be expanded as power series in 

y = r-r,. 

u = u,(l- . . .) exp (;[ail?( 1 - r;)]&y 

For sufficiently small y ,  this gives 

- a,Rr,[aiR( 1 - rk)]-+y2//2 + . . .}. (3.9) 

which indicates the rapid phase changes across the layer and the sharp peak in 
the amplitude. 

It is clear that the above analysis can give no estimate of the eigenvalues since 
no account is taken of the boundary conditions, but if a, and a, are measured 
experimentally, the approximation (3.8) and (3.9) give an estimate of the disturb- 
ance velocity variations. This allows a comparison to be made with Leite's 
experimental results. For the measurements made a t  the station closest to the 
disturbance generator it is found that (3.5) is only in error by about 5 % for 
disturbances generated by the sleeve, and the estimates of the width of the layer 
and of the rate of change of phase at r = r, given by (3.9) are, rather surprisingly 
in the light of the crudity of the assumptions made, usually found to be in error 
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by less than 30 yo. Hence the above analysis seems to be a useful guide, even 
though i t  cannot be expected to be very accurate. In  $6, a more complete 
analysis will be carried out taking account of the boundary conditions and of 
the different approximations that are valid in different parts of the complex 
r-plane. In  the next two sections, the two special cases will be examined in which 
the layer is close to the centre of the pipe or close to the wall. 

4. Analysis for disturbances confined to a thin region near the centre 
For disturbances of the singular perturbation type which are confined to a 

thin region near the centre of the pipe, the non-dimensional wave-number a, 
will be approximately equal to ,8, as (3.5) indicates when rnL is close to zero. The 
thickness of the layer to which disturbances are confined will be determined by 
a balance between convection processes and viscous processes. To understand 
a little more of these processes, it is instructive to consider what would happen 
to a disturbance of fixed wave-number in an inviscid fluid, where 2, is changed 
only by convection. If initially, neighbouring radial points are in phase, then 
they wiIl become more and more out of phase as time goes on due to the shearing 
motion, which changes the phase at different radii at different rates. For instance 
if the initial value of Zf defined in $ 2  is equal to cos(a,x), the value of 2, at 
time t will be 2, = cos {a,[x - U ( r )  t ] } ,  

and differentiation of this expression with respect to r shows how the radial 
gradients grow with time. The same is true at large times if the initial value of 2, 
has the form f(r) cos (qx). In  a real fluid, of course, gradients cannot steepen 
indefinitely, as viscous diffusion will tend to smooth out the steep gradients, a t  
the same time damping the disturbance. 

Near the centre of the pipe the shearing motion is not very pronounced and 
so the effects discussed above will be relatively weak. It turns out, in fact, that 
disturbances with maxima nearer the centre have smaller rates of damping. 
The thickness of the layer, the rate of damping, etc., can be estimated in order 
of magnitude as follows. In  dimensional terms, if 1 is the thickness of the layer, 
the shear is of order U"1 and the rate of change of 5 due to convection at one 
point in the layer is of order a, U"125 relative to the rate a t  another point in the 
layer. The rate of change due to diffusion, on the other hand, is of order (v/Z2)5 
and the two effects balance in a layer of thickness 

1 N (VIE,. Uff)&. 

Thus the greater the shear gradient, the thinner the layer, and the greater the 
viscosity the more the layer is spread out. The time rate of damping of the 
disturbance is of order (v / t2)  c, so that the spatial rate is given by 

ai U - v/Z2 - (va, U")a. 
In  non-dimensional terms 

1 - (a$-& - 
and aiR - (a,R)* - (BE)). 
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There is little difference between the timewise and spacewise problems in this 
limit, as a spatially decaying disturbance can also be regarded as a time-decaying 
disturbance being convected with the fluid at the centre of the pipe. Also, since 
ai/ar is small, a and /3 are approximately the same, and the analysis to follow 
applies equally well to the timewise and spacewise problems. 

This limiting problem has been considered previously by Pekeris (1948), who 
found a simple formula for the eigenvalues. Corcos & Sellars (1959) found the 
same formula, but by a method that seems open to question. Gill (1962) later 
indicated that the eigenfunctions can also be expressed in a simple form. They 
are calculated as follows. Taking note of the above scalings, a new radial variable 
s can be defined by 

The factor exp ( - air) is included here and in the following definition so that 
the resulting equation will not contain ‘i ’ explicitly. The constant coefficient 
of 6 in (2.4) can be collected together and scaled as follows: 

s = e-%i.(aR)#y2. (4.1) 

i/3R - iaR - a2 = 4e-iin(aR)h, 

4s d2c/ds2 + 8 dc/ds + (4m - s)  5 = 0. 
so that (2.4) becomes 

By (4.1), the boundary point r = 1 becomes a boundary at s = 00, and so one of 
the boundary conditions that must be applied to the solutions of the above 
equation is that 5-+ 0 as s -+ co. 5 in fact has an exponential singularity at  co, 
which can be removed by defining 

giving in place of the equation for 6 
y = 7 e+, (4.3) 

sd2q/ds2 + (2 - s)  dr/ds  + (m - 1) 7 = 0. 

The problem has now become a classical eigenvalue problem: to find the values 
of m for which the above equation has solutions regular at s = 0 and for which 
5 = q e-48 tends to zero as s -+ 00. The eigenvalues are the positive integers 

m =  1,2 ,3  ,..., 
and the eigenfunctions are Laguerre polynomials 

7 = -L;-l(s). (4.4) 

Expressions for the damping rate and wave-speed, c,  can be found from (4.2). 
For the spacewise problem, /3 is real, and if p is small compared with Rf, we have 
to the second order 

c = plar = {l + 4m(2PR)-&)-l 
and to the same order 

(4.5) 

(4.6) ai R = 2m( 2/3R)* + 8m2. 

For a given frequency and given Reynolds number, the mode with the least 
damping is the one given by m = 1. This is also the one with largest wave-speed 
and has maximum 151 at the centre. If the frequency is allowed to vary at a 
given Reynolds number, the damping rate decreases as the frequency increases, 
but the decrease is not without limit for when PR is of order unity, the wall is 
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not outside the layer and the approximation breaks down. The changes at  this 
breakdown will be examined in 0 6. If the frequency is increased, (4.5) and (4.6) 
eventually cease to be valid approximations to (4.2), and if the changes are 
followed it is found that for very large p, a., and ai both asymptote to the values 
(+pR)*. Because of the large damping rate, however, such solutions are of little 
physical interest. It may also be noted that for /5’ sufficiently large, (4.2) also has 
solutions for which a,. and ai are both negative. -a, is very large, and these 
represent upstream-moving rapidly damped solutions which are excluded from 
the permissible set of eigenvalues by the condition for x --f co. 

Disturbance velocity profiles 

It so happens that the eigenvalues were found above without reference to 
disturbance velocities, this being possible due to the remoteness of the solid 
boundary. The velocity components can be found by integration. For instance, 
provided that p is small compared with RB, (2.2), (2.3) and the definition (4.1) 
of s show that, within the layer, the axial component can be determined by the 
formula dulds = const. < = const. 7 e-*s. 

7 is one of the polynomials (4.4) of degree (m- l),  and integration shows that 
ue*s is a polynomial of the same degree. The first four modes are represented 
below, the arbitrary multiplicative constant being omitted: 

(4.7) 

the integration. Its 

I m = 1, = e+; 

m = 2, 

m = 3, 

m = 4, 

u = se-BS; 

u = (l-s++s2)e-*S; 

u = s(6 - 3s + is2) e-*s. 

Actually, there is also an additive constant arising from - 
value, however, is determined by the conditions at the solid boundary, and is 
small whenever p is small compared with Rg. 

The velocity profiles represented by (4.7) are given in terms of their amplitude 
and phase in figure 1.  The value of PR was taken to be 3900 so that direct com- 
parison can be made with Leite’s (1956) measurements for that value of pR, 
reproduced in figure 2. The vertical scales are chosen for easy comparison with 
Leite’s results. Below each curve for the amplitude is shown the extent to which 
each mode would be damped a t  the second downstream station according to the 
theory. The table above the phase curves shows the phase shift that would be 
expected between the first and second downstream stations according to the 
theory. Before comparing the two figures, it  should be noted that (3.5) gives 
quite a good estimate of the position of maximum amplitude for modes 3 and 4, 
though not for modes 1 and 2. Also, the rates of change of phase a t  the positions 
of maximum amplitude, and the width of the peaks in the amplitude curves are 
predicted surprisingly well by (3.9). 

Now comparing the two figures, it  will be observed that the experimental 
amplitude curve corresponds very well with the theoretical one for the mode 
m = 4. Also the slope of the experimental phase curve agrees very well with the 
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FIGWRE 1. Theoretical variation of (a) amplitude and (b)  phase of the disturbance velocity 
for the modes m = 1, 2, 3, 4, with scales appropriate to the conditions stated on figure 2. 
For each mode a second curve of smaller amplitude is drawn in (a)  to show the theoretical 
damping in 10.4 diameters downstream distance (cf. figure 2) and the table in (6) shows 
the theoretical change of phase in the same distance. Part of the curves for m = 3, 4 have 
been omitted to avoid confusion with other curves. 
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FIGURE 2. Experimental variation of (a)  amplitude and (b)  phase of the disturbance 
velocity, reproduced from Leite (1956). R = 4000;f = 40 c/s; x ,18.2 &am. downstream 
from aerofoil; 0 ,  28.6 diam. downstream from aerofoil. 
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slope of the theoretical one a t  the same point. However, the agreement is not so 
good for the changes observed with downstream distance: the observed damping 
is much less than the theory predicts, and the phase shift of 1840" predicted. 
Also the position of maximum amplitude has shifted nearly to that for the mode 
m = 3. There are three effects which could contribute to such discrepancies: 

(1) Non-linear effects may be important under the experimental conditions 
since Leite found that by feeding more energy into the disturbance generator a t  
the same Reynolds number, growing disturbances could be produced. 

( 2 )  It has been assumed that the disturbances are axisymmetric, whereas the 
disturbance could well be three-dimensional. 

(3) The comparison has been made with results for a single mode. This is 
allowable if one mode is dominant, but i t  could well be that the disturbance 
contains two or three modes in comparable amounts. We will therefore consider 
the behaviour of a disturbance comprising two modes. 

A disturbance comprising two modes 
Before looking at  the particular case of a two-mode disturbance, there are some 
general remarks that can be made about the sum of an arbitrary number of 
modes of the type (4.7). First, there is a great variety of possible radial distribu- 
tions of axial velocity at a particular downstream station, since a combination 
of modes of the type (4.7) can make u eas equal to an arbitrary polynomial in s. 
Secondly, the following changes occur in the properties of the modes of the type 
(4.7) as m increases, assuming that p is small compared with Rj: the damping 
rate increases (by 4.6); the wave-number increases (by 4.5); and figure 1 shows 
that for the first four modes a t  least, the radius at which the amplitude of the 
disturbance velocity is a maximum increases. Consequently, for a disturbance 
comprising several such modes, it  will be found that with increasing downstream 
distance the modes corresponding to smaller values of m will become more 
important, so that the radius a t  which the maximum disturbance amplitude 
occurs will tend to decrease, and the rate at which the phase changes with 
downstream distance will tend to decrease. 

Now consider the special case where the disturbance is a linear combination 
of the two modes m = 1 and m = 2. As figure 1 shows, these two modes have the 
same phase variations with radius, so that i t  is possible for the two modes to 
reinforce each other in such a way that the amplitude of the combination is 
equal to the sum of the amplitudes of the two components. On the other hand, 
the two modes can be completely out of phase, in which case the amplitude of 
the combination is equal to the difference between the amplitudes of the two 
component modes. Hence there can be a considerable variety of distributions 
of amplitude with radius, the differences being due merely to different phase 
relationships between the two components. 

In the case where the two components are out of phase, the resultant amplitude 
curve will have a zero at a certain radius, r,, with a corresponding jump in phase 
of 180", similar to the one that occurs for the mode m = 3 (see figure 1). Leite 
(1959, p. 81) in fact found such phase jumps for several observed velocity distri- 
butions. Notice also that if the two modes have such a phase relationship, or one 
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close to it, the curve showing the radial change of amplitude will have two 
maxima-and this is another feature of many of the curves found experimentally. 
Of course, the zero in amplitude can only occur a t  a certain axial position, 
x = xo say, since the phase relationship between the two modes changes with x. 
Consequently, an axial traverse at radius r = ro will show the disturbance 
amplitude decreasing to zero a t  x = xo, and then increasing temporarily as x 
increases further. Also the phase changes found on such an axial traverse would 
be quite different at  the radius r = ro - S from the change a t  the radius r = r,, + 6 
because of the phase jump of 180". This fact highlights the dangers inherent in 
trying to deduce the damping rate and wave-speed from an axial traverse at  only 
one radial position. Leite, in fact, shows some of the differences between the 
values of the wave-speed found from axial traverses a t  different radii in figures 
39 to 41 of his 1956 report. 

The number of modes of the type (4.7) for given PR 
It has already been observed that as m increases, the radius, r,, at which the 
disturbance amplitude is a maximum increases. F o r m  sufficiently large, rm will 
be of order unity and it will no longer be possible to disregard the boundary 
conditions a t  the wall, so that the approximation will break down. In effect, this 
puts a limit on the number of modes of the type (4.7) that exist for a given large 
PR. To estimate this number, (3.5) can be used as a sufficiently accurate estimate 
of r,, and (4.5) shows that r, becomes of order unity when m is of order (PR)*. 
In  other words, the number of modes of the type (4.7) that exist is of order (PR)). 
Since this represents only a finite number, there must exist other 'viscousy 
modes in order to make up a complete set. In  the next section, further modes 
are found, but again their number is finite. The further modes required are 
found in $ 6 .  

5. Analysis for disturbances confined to a thin region near the wall 
If the disturbance is confined to a thin layer close to the wall, then on the 

length scale of the disturbances the wall appears to be flat and the undisturbed 
flow one of uniform shear. These disturbances, then, will be the same as disturb- 
ances to plane Couette flow which are confined to a thin layer close to one of the 
bounding walls. This fact was noticed by Pretsch (1941)) and allows us to draw 
on results obtained for plane Couette flow. Four recent papers on that subject 
which are relevant are by Zondek & Thomas (1953), Wasow (1953), Grohne 
(1954) and Riis (1962). However, these authors all adopt the classical approach 
of seeking the decay or growth with time of disturbances of a given wavelength, 
rather than the decay or growth with downstream distance of a disturbance of 
a given frequency. The distinction between the two cases is a real one, for the 
effect of the wall is important and the wave-speed of the disturbances is small. 
In  this paper, emphasis will be given to the second of the two cases. 

The orders of magnitude of the width of the layer, damping rate, etc., can be 
worked out by the same method as was used in the last section, but we cannot be 
sure in advance that disturbances will be damped because of the unknown 
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generation or absorption of vorticity by the wall, discussed in 0 3. In dimensional 
terms, if 1 is the thickness of the layer, the relation (3.1) suggests that p is of the 
same order as a, U'l. The rate of change of 6 due to convection for one particle 
in the layer will differ from that of another particle by order a, U'lc, while the 
rate of change due to viscous diffusion is of order (v/12) 6. The two rates balance 
when 

The time rate of damping, or of growth, has order of magnitude given by 

1 = 0{(v/al. U ' ) f }  = O((V/@)+}. 

ai u'l N v/J2 - p, 
and so is proportional to the frequency, but at a given frequency, the spatial rate 
of decay (or growth) is least for the greatest viscosities and smallest shears. This 
seems a strange result at first, but the reason is that greater viscosity or smaller 
shear makes for a thicker layer, and hence larger wave-speed, so that the spatial 
damping rate will decrease while the time rate remains steady. In non-dimen- 
sional terms, I - (PIq-4, 

a,. R N ai R - (pR)g. 

Compared with the damping rate (4.6) for disturbances confined to a thin region 
near the centre, the magnitude of the damping rate for these disturbances is 
very large. 

The appropriate equation is obtained by putting r = 1 - y in (2.4) and assuming 
that y, the distance from the wall, is small. This gives 

Taking note of this equation and of the scalings worked out above, it is convenient 
to define the scaled variable, z, as follows, 

z = ( 2 i g R ) f  (~-/3/2a-iia/SR), (5.1) 

so that the equation becomes 
d2LJdz2 - z c  = 0. 

The value of z at the wall, which we can call - zq, is given by 

z = zP = - i/?R/(2iaR)+ - {ia/(2R)+}4, (5-3) 

where for definiteness, the one-third root is taken as the one for which 

- +7r < arg (iaR)A 6 Qn-. 

The suffix q is used because zq can have a whole sequence of values, corresponding 
to the eigenvalues of the problem, and q will be used as an index of the eigen- 
values. 

The solution of (5.2) that vanishes as y -+ co is 

6 = const. Ai (z) ,  (5.4) 

where the Airy function (Miller 1946) notation is used in preference to the more 
clumsy expression in terms of Hankel functions that is often used. The eigen- 
values will be determined by integrating (5.4) to find the disturbance velocity, 
and then applying the boundary condition that the velocity vanishes a t  the wall. 

11 Fluid Mech. 21 
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Damping rates and wave-speeds 

When the wavelength of the disturbance is large compared with the thickness of 
the layer, that is, by the scalings found above, if la] is small compared with R4 
or ,8 is small compared with unity, the disturbance velocity in the layer is con- 
tained mainly in its axial component, and by (5.1), (2.2) and (2.3), u is given in 
terms of z by duldx = const. 5. 
With an appropriate choice of the arbitrary constants in this formula and in 
(5.4), this gives 

u = 1' Ai ( 2 )  dz. 

I-, 

(5 .5 )  
- % 

But the disturbance velocity must vanish as y + co, and so the following eigen- 
value equation for zq is implied: 

m 

Ai (2) dx = 0. (5 .6 )  

Notice that if zq is a root of (5.6), so also is the complex conjugate, z,*. We will 
use the positive integers, q, to describe the roots of (5.6) with positive imaginary 
part in order of lzql, and let zPq = 2:. 

Corcos & Sellars (1959) found rough approximations to the first few roots of 
(5.6) from numerical tables, and checked the first pair on a differential analyser. 
In the course of computing the disturbance velocity profile given by (5 .5) ,  their 
value was found to be in error by about 1 %, the value correct to four significant 
figures being zfl  = 4.263exp ( 5 15" 34' i). (5 .7)  

To find the corresponding damping rate and wave-number, (5.3) must be used. 
For p small this formula may be written 

aR = 4 e*in(,8R/xg)3. (5.8) 

Substituting from (5.7) it is clear that the first pair of modes correspond to  
damped disturbances. 

Even for the first root, the value of lzll is large, so that the asymptotic approxi- 
mation to (5.6) for large 1x1, namely 

- 1 +dx; fcos  (2/3$+ in-) = 0, (5.9) 

is quite a good approximation. The approximate values of z1 to z4 given by this 
formula are 

(5.10) 

and it is clear that all disturbances of this type are damped. In  fact, this type of 
disturbance where the effect of the wall is important is damped much more 
heavily than the type of disturbance examined in 5 4, where the effect of the wall 
is not important, as a comparison of (5.8) with (4.6) shows. Note also the measure 
of agreement between the approximate value of x ,  given by (5.10) and the more 
precise value given by (5.7). 

1 x1 = 4.28 exp (15" 22' i), 

z3 = 9-18exp(3"31'i), 

x2 = 6.94 exp (8" 5' i), 
z4 = ll*18exp(4" 15'i), 
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If the results (5.10) are substituted in (5.8), it is found that the damping rate 
decreases as q increases. Also as q increases, i t  can be expected that since IzqJ 
increases, the radius at which the disturbance velocity is a maximum will also 
decrease, so the trend is the same as that found for the modes studied in $4 and 
the radius corresponding to the maximum disturbance can be expected to 
decrease with downstream distance. In  Leite’s (1956) experiments, this is found 
to happen in the large majority of cases, but not without fail. Other features 
discussed at  the end of $4 which may be expected of disturbances comprising 
several modes apply also to combinations of modes of the type discussed in this 
paragraph, and indeed are observed. Examples are the double maxima in some 
of the curves shown in figures 6 and 7 of Leite’s 1959 paper. 

It should also be mentioned that (5.8) can be used equally well for timewise 
disturbances with the same values of xq, provided that a is small compared with 
R). However, if one attempts to convert the results of the spacewise theory into 
a timewise form, as Leite does with his spacewise experimental results, they will 
be found to differ by a considerable factor from the results obtained directly 
from the timewise theory. The relation (5.1) also is different in the two cases 
implying that the velocity profiles are different. If in the spacewise problem, 
pis no longer small, or in the timewise problem aR-* is no longer small, the values 
of zq are not even the same for the two cases. The changes in zg in such circum- 
stances are reported in my thesis (Gill 1963). Suffice it here to say that the rate 
of damping gets very large as the frequency or wave-number of the disturbance 
increases. 

A disturbance velocity profile 
The velocity profile for the mode q = 1 was computed on the Cambridge com- 
puter EDSAC 2. The expression for the axial disturbance velocity a t  a given 
time and given downstream position is (5 .5) ,  with z given by (5.3). The method 
was to integrate with respect to y from a large value of y, where end values were 
calculated by asymptotic expressions, to y = 0. The Airy function was calculated 
simultaneously, using the differential equation (5.2). The numerical procedure 
adopted was the Adams-Bashforth process, using the EDSAC Library sub- 
routine. 

The integration was carried out for the first time using the values of z given 
by Corcos & Sellars. This gave a non-zero value of u at y = 0, and so a small 
correction had to be made to zl. The integration was carried out again, and the 
process repeated until the corrections to x1 were very small. The value of z1 so 
obtained is the one given in (5.7). The corresponding velocity profile is plotted 
in terms of its modulus and phase in figure 3. The value of PR chosen was 2370, 
so that direct comparison could be made with some of Leite’s results, reproduced 
in figure 4, which correspond to a value of BR approximately that. Note that 
p has a small value approximately equal to 0.18. 

In  the amplitude curves shown in figure 3, the maximum for the upper curve 
has been chosen to be equal to that obtained in Leite’s experiment at the first 
downstream station. The two lower curves indicate the amount that the disturb- 
ance would be damped according to theory a t  the other two downstream stations 

11-2 
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of the experiment. The maximum in the experiments is somewhat closer to the 
centre of the pipe, indicating the presence of modes other than the one given by 
q = 1, also the damping is somewhat less than that for the mode q = 1, as is to 
be expected if other modes are present. The lower of the phase curves in figure 3 
corresponds to Leite's first downstream station, and the other curves t o  the 
other stations. The change of phase with downstream distance is a little greater 

Radius (in.) Radius (in.) 

( a )  ( b )  

FIGURE 3. Theoretical variation of (a)  amplitude and ( b )  phase of the disturbance velocity 
for the mode q = 1, with scales appropriate to the conditions stated on figure 4. The 
curves of smaller amplitude in (a)  show the theoretical damping in downstream distance 
of 2.6 and 3.6 diameters (cf. figure 4), while the two upper curves in ( b )  show the theoretical 
changes of phase in the same distances. 
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FIGURE 4. Experimental variation of (a)  amplitude and ( b )  phase of the disturbance 
velocity, reproduced from Leite (1956). R = 13,000;f = 25 c/s; 0 ,  3.0 diam. downstream 
from sleeve; 0, 5.6 diam. downstream from sleeve; A, 6.6 diam. downstream from sleeve. 
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in the experiments than it is for the mode q = 1, which is to be expected if other 
modes are present. Also the rate of change of phase with radius at the radius of 
maximum amplitude agrees well with the theoretical value. It is also found 
that the values agree surprisingly well with those ezpected if the crude formula 
(3.9) were applied, the errors in position of the maximum being less than 5 % and 
the errors in the thickness of the layers being of the order of 15 yo. 

The number of modes of the type (5 .5)  for given ,f3R 
As q increases, the position at which the maximum disturbance velocity occurs 
moves farther and farther away from the wall, and eventually will be at  a 
distance of order unity so that the approximation fails. To estimate the number 
of modes of the type (5.5) that exist for a given large PR, notice first that for 
large q, the approximation (5.9) shows that 

2/3 1 ~ ~ 1 4  N ( 2 q -  1/4) 7 ~ .  

Using (5.8) for the wave-number and (3 .5 )  to estimate r,, it will be seen that 
(1 - rL)  is small only if q is small compared with (pR)h. In  other words, the 
number of modes of the type (5.5) that exist is of order (/3R)*, and combined with 
the modes of the type (4.7), the total is still only of order (pR)Q. This fact, or the 
equivalent fact for the timewise problem, caused Corcos & Sellars to reach the 
conclusion that the number of modes for a given /3R is finite. This would be an 
embarrassment since an arbitrary function cannot be described in terms of a 
finite number of eigenfunctions, but in the next section a further set of eigen- 
functions of the singular perturbation type is found, thus resolving the problem. 

6. A comprehensive asymptotic analysis 
In 3 3, asymptotic approximations, such as (3.3), to solutions of the equations 

were found. Although these approximations give a rough description of certain 
features of the flow, their validity is strictly limited and no estimate of the 
magnitudes of the eigenvalues can be obtained without a more detailed analysis. 
It is therefore the aim of this section to obtain asymptotic approximations to the 
eigenfunctions uniformly valid on the interval 0 < r < 1, and to find correspond- 
ing approximations to the eigenvalues. The method will be to find approxima- 
tions valid on different subranges of 0 < r < 1, and to relate the different approxi- 
mations by standard matching procedures. Approximations of the type (3.3) 
are valid for part of the interval 0 < r < 1, but break down near the singular 
point, r = 0, and on part of the interval near r = rm which turns out to be close 
to the critical point r = re. Thus four subranges are generally required: a neigh- 
bourhood, s,, of r = 0, a subrange, s,, which lies between r = 0 and r =rm, 
a neighbourhood, S,, of r = r,, and a subrange, S,, which covers the rest of the 
interval up to r = 1.  The same method can be used to treat the three-dimensional 
disturbances. 

Corcos & Sellars (1959, $8 4,5) use a similar method for timewise disturbances, 
but make use of a procedure which directly connects the approximations valid 
in S, with those valid in S,. However, in carrying out this procedure they neglect 
a term which is important in some circumstances, thus leading to the large 
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discrepancy between the results they find in their $ 7  and the more accurate 
results of their 0 9. Hopf (1914) made a similar omission when investigating the 
stability of plane Couette flow by asymptotic methods, as Riis (1962) pointed out, 

First of all, the approximation valid near r = 0 can be found from (2.4), 
which may be written 

where 

For definiteness, we choose the root p for which 

gll+ 35’/r +pz( 1 - rz/rE) 6 = 0, 

p2 = i$R - iaR - a2 = - iaRr:. 
(6.1) 

(6.2) 

--&r < arg(,urc) < in. 

(6.1) has one solution regular at r = 0 ,  and for large (p~,.)~, this solution is given 
approximately by 

the error being of order J,urcl-2 when Jprl is of order unity. Integration using 
(2.3) gives for the stream function, to the same order, 

5 = (Pr)-lJl(Pr), 

# = rJ1(,ur)/,u(p2 + a2) + Ar4(ar) ,  (6.3) 

A being a constant of integration. This approximation is valid asymptotically 
for large JprCl2 provided that lr/rcl < 1, so that S, can be defined as the range 
0 6 r < (re] of values of r .  Of the eigenfunctions already found in $$ 4 and 5 ,  the 
one with the smallest value of is the mode m = 1. By (4.2) and (6.2), the 
value of (,urc)2 for this mode is 16, which is quite big enough for (6.3) to be a good 
approximation for this mode, and hence for all modes. 

Since we will not be interested in values of la/ as large as R&, the corresponding 
disturbances being highly damped, a2 can be neglected in comparison to ,u2 in 
(6.3) and for large IprI, (6.3) gives approximately 

$J = r*(27rp7)-* [exp { i (pr  - an)} + exp { - i (pr  - 3r)}] + ArIl(ar), (6.4) 

so that the combination of approximations like (3.7) that matches (6.3) is 

# = r~ (2n~~2g’5 ) -Q[exp( i (g -~n) )+exp{ - i (g -~n)} ]+Ar l1 (ar ) ,  (6.5) 

where g’ is defined by (3.4) and g is the integral of g’ that vanishes at  r = 0, 
namely 

g = i” (1 - r2/r,2)6dr. (6.6) s,’ 
The lower ‘end’ of the range S, of the validity of (6.5) is given by lpl r 
that S, and S, have in common the range 

1, so 

which exists because Jprcl is large. The existence of the overlap range ensures the 
possibility of matching, the criterion being that (6.5) and (6.6) should have the 
common asymptotic expression (6.4) in the overlap range. 

Now, €or all the modes found in $6 4 and 5 ,  the critical point r = rc is close in 
the complex r-plane to the real axis, and since (6.5) breaks down near r = rc, 
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a new approximation is required for that part of the real axis near the critical 
point. In  any case, the approximation valid near r = rc can be found by putting 

r =re-  y 

in the equations, and assuming y is small. The approximate equations are, in 
fact, of the same type as those studied in $5, although y has been defined slightly 
differently in this section. For instance, (6.1) becomes 

where u3rE = 2p2r,2 = -2iaRr,4, (6.8) 

and we choose -+n- < arg(m,) < +n-. The approximate solutions of (6.7) are 
linear combinations of the Airy functions 

1; = Ai (e*tsi"gy), (6.9) 

the error being of order lm-cl-l when Ivy1 is of order unity. The approximation 
is valid for large lm,l provided that ly/rcl < 1, so that S, can be defined as the 
range of real values of r that satisfy this relation. Such a range always exists if 
the imaginary part of r, is small for large Ipr,l , which is true in all the cases con- 
sidered later. In  any case, the approximations are valid in the appropriate part 
of the complex r-plane. On the other hand, the upper 'end' of the range, S,, of 
validity of (6.5) and the lower ' end' of the range, S,, are both defined by I ( ~ y l  >> 1.  
Thus the overlap range will be the part of the real axis in the overlap region 

Igl-l< IYI @ Ircl 

of the complex r-plane, which exists because Icrrc[ = 12,u2rEli is large. Note, 
however, that the smallest value of larcl, that is, the value for the mode m = 1,  
is 2% which is not particularly large, and so (6.9) is not such a good approximation 
for the first two or three m-modes, although it will be for all the other modes so 
far considered. 

The stream function and velocity components corresponding to (6.9) can be 
found by integration, using ( 2 . 2 )  and (2.3). To the first order, these equations 
become, in S,, 

The first equation may be integrated directly, using the second equation and 

d$/dy = -rcu, d u / d y  = roc. 

(6.7) to give $ = -  r ,  yu  + r,2r3d1;/dy + B, (6.10) 

where B is a constant of integration. Then u can be found using the second 
equation together with (6.9), showing that the approximate expressions for u in 
S,  involves integrals of Airy functions, but the coefficients involved can only be 
found by matching with (6.5) and (6.6). In  the overlap region ly/rcl is small, 
and so (6.6) becomes g E K - g ( ( T y p ,  

where (6.11) 
J O  
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while (6.5) shows that 

u + $'/r -" i(nt.rca3)-1(cry)-~ [exp ( i ( ~ -  gn - ~(vy)$)) 

+ exp { - i (K  - in - Z (  cry)*)))] + Aal,(czr,). (6.12) 

It can now be seen that the appropriate combination of integrals of the Airy 
functions (6.9) that give the velocity component u in S, is 

(6.13) 

because Ivy1 is large in the overlap region, and the behaviour of the expression 
in (6.13) for large Ivy1 is given by (6.12). Also, comparison of (6.5) and (6.10) in 
the overlap region gives 

B = L4rJ1(arc). (6.14) 

It has been assumed here that larg (ay)I < $77 in the overlap region with S,, an 
assumption of this nature being necessary since for large lvyl the integrals in 
(6.13) can have different asymptotic expressions for different values of arg (fly). 
It is known that the range of arg (vy) chosen is the correct one for each mode in 
the limit as /3R-+oo, the limiting eigenfunctions and eigenvalues having been 
found in $5 4 and 5, and that the values of arg (ay) for the overlap region of X, 
with S,  fall within the range 0 < arg(5-y) < &T. The procedure followed below 
is to find an eigenvalue equation based on the assumption that these ranges of 
arg (ay) are appropriate for finite values of /3R as well, and this eigenvalue 
equation is then used to find how the eigenvalues for each mode change as PR is. 
decreased from the large values for which the eigenvalues are already known. 
During this process, the assumptions on arg (cry) are continuously checked to 
ensure they are not violated. 

The matching process for relating approximations valid in 8, with those valid 
in S,  is the same as the process for relating approximations valid in X, with those 
valid in S,, the only difference being in the range of arg(ay) involved. First, 
we re-write (6.13) using the identity 

l+/i 'Ai(t)dt+/m Ai ( t )  dt +Jm Ai ( t ) d t  = 0, (6.15) 

which follows from integrating formula (30) of Miller (1946) from 2 = 0 to 
2 = - s, and using the relation 

exp Gir) s exp (- Qir) s 

JOm Ai ( t )  dt  = 4. 

The new way of writing (6.13) is 

+ 2v-,r,-lei"+An~,(ar,). (6.16) 

The approximation to the stream function valid in S, will have the same form as 
(6.5), the differences being in the coefficients and in that the Bessel function Kl 
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will be involved in the inviscid part as well as Il. Using (6.10) and the asymptotic 
behaviour of (6.16) for large Ivy1 leads to the formula 

$ = r4(27~,&‘~)-4 e-ain[(eiK- e--iK) ecih - i ei(fIi-h)] + CrIl(ar) + DrR,(ar), (6.17) 

h = ,u (1--rZ/r:)4dr = g-K ,  (6.18) where 

and C and D are constants which are required by the matching process to satisfy 
L 

crc 11 (arc) + Drc h’1 (arc) = A re I1 (arc) 7 

CarcI,,(arc) - DarcKo(arc) = AarcIo(arc) + 2a-3eiK. 

The first condition follows from matching stream functions and the second from 
matching axial velocity components. The omission made by Hopf (1914) and by 
Corcos & Sellars (1959) corresponds to neglecting the last term of the second 
equation, this term coming from the penultimate term in (6.16), and so from the 
first term in (6.15). Eliminating C from the above pair of equations gives 

D = - 2 r 3  eiKIl(arc). (6.19) 

The approximate eigenvalue equation 

The approximate eigenvalue equation follows from the boundary condition 
that the velocity vanishes at the wall, i.e. 

$(1) = $’(1) = 0. 

Using the expression (6.17) for $, these conditions yield, on elimination of the 
undetermined constant C, 

I,(..) (2n,u2h:)-+ e f i n  [(e””- e--iK) e--ihi + i ef(x+hi)] 

= - D = 20.-3 e”Il(arc), (6.20) 

by (6.19), h, being the value of h a t  r = 1. 
As a check it can be shown that the eigenvalues already found satisfy this 

equation approximately. First, the inviscid solutions found at the beginning of 
$ 3 satisfy the equation since eiK = 0 in that case. For the ‘viscous’ modes, the 
eigenvalues are known in the limit as /?R+oo from the work of $04 and 5. 

(i) For the modes discussed in $ 4, rC+ 0 and eihl-+ 0 as /?R -+a, so that (6.20) 
reduces to exp (2iK) = 1, which is satisfied exactly by the eigenvalues found in 
$4, as comparison of (4.2) with the definitions (6.2) and (6.11) shows. It seems 
rather fortuitous that the agreement is exact since, for instance, the mode m = 1 
is the one for which the least agreement would be expected from the form of 
approximation used. 

(ii) For the modes discussed in $5, re -+ 1 and e--iK-+ 0 as /3R -+ co, so by (6.18) 
and (5.3) 

h, M +z; 

and so (6.20) reduces to (5.9). Theroots (5.10) were found on EDSAC by Newton’s 
method as a preliminary to the computation described below. 

Now the eigenvalues for the viscous modes corresponding to finite values of 
,8R depend also on the parameter R. For simplicity we will consider only the 
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limit for which R = co, so that in (6.20) Il(arc)/Il(a) will be replaced by r,, 1.1 
being zero in this limit. For the limit to be a good approximation, p should be 
small, and in Leite's experiments P is always less than one, so that the limit is 
not unrealistic. The values of aR satisfying the equation were found by decreasing 
PR in steps from the large values for which aR is already known, and adjusting 
aR at each step in order to satisfy the equation. Checks were also made a t  each 
step to ensure that the conditions under which (6.20) is valid were not violated. 
The computer EDSAC was used for the purpose, and more details of the method 
are given in my thesis (Gill 1963). The results are shown in figure 5, the labels for 
large values of /3R corresponding to the values of m and q introduced in $ 5  4 and 5. 
As PR+O it  will be noticed that another limit is approached, For this limit 
r c ~  1 and so (6.20) becomes approximately 

exp ( 2 i K +  2ih,) = i, 
so that K + h ,  = ( 1 + 3 / 4 ) ~ ,  

where I = 1,2 ,3 ,4 ,  .... As PR becomes smaller, h, eventually becomes so small 
that the boundary point r = 1 is very close to the critical point r = T, so that the 
approximation valid in X, must be used for application of the boundary condi- 
tions and determination of the eigenvalue equation instead of the approximation 
valid in 8,. Using (6.10) and (6.12), i t  is found that the appropriate equation is 

Ai ( t )  &/JIXp ( -+ i f f )  w1 Ai ( t )  dt, 

where y1 = re- 1. As pR+ 0, yl+0 and the right-hand side of the equation 
tends to - 1. By (6.2) and (6.1 l ) ,  this implies that in the limit 

e-2ik7 = - / r (+i f f )ay,  

aiR x (4Z+ 2)27 

G = , 8 / ~  z 4 + 0*6(2Z + 1)-+. 
(6.21) 

The exact limiting equation for PR = 0 is (6.1) with r, = 1, and u2 = aiR playing 
the role of eigenvalue. The stream function satisfies (2.3). The first few modes 
can easily be found by expanding solutions in power series in r ,  for different 
values of p, and thus finding the values of p for which the boundary conditions 
are satisfied. The values for the first three modes were found in this way at the 
M.I.T. Computation Centre, the values being 

p = (aiR)* = 5.664, 9.783, 13.83, (6.22) 

and it is seen that (6.21) provides quite a good approximation. 

Discussion of the results shown inJigure 5 

(i) The number of modes: it will be recalled that the number of q- and m-modes 
is of order (pR)*, and so is finite for any given ,8R and decreases as PR decreases. 
However, in figure 5 it  is seen that as PR decreases, there is a change from the 
behaviour for large PR and as PR tends to zero, the limiting values given approxi- 
mately by (6.21) are approached. For instance the modes corresponding to 
q = 1 , 2 , 3 , 4  for large PR change over into the modes 1 = 4,12,21,31, and the 
modes given by m = 1 , 2 , 3 , 4  for large PR change into the modes given by 
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1 = 1,2,3,5 for PR small. Now for the limit used in finding the 1-modes to be a 
good approximation, 11 -rJ must be small, where rc is given by (3.3). By (6.21) 
this requires that 41 be large compared with (PR)& so that as PR decreases, more 
and more 1-modes appear to replace the q- and m-modes that disappear-just 
as is found to happen in figure 5. 

(ii) Some experimental results of Leite’s are included in figure 5 for com- 
parison. The points shown were deduced from figure 13 of Leite (1959) in which 
the experimenter presented his results in a timewise form. To make a proper 
comparison with the theory, however, one needs to compare other features of 
the disturbance such as disturbance velocity profiles, as was done in $9 4 and 5. 

0 R = 13000, r = 0 475 (sleeve) 
(1 R ~ 4000, 1’ = 475 (air foil) 
A R ~~ 13000, r ~ 0.425 (sleeve) 
v R ~ 6600, r ~ 0.525 (sleeve) 

0.01 0.02 0.03 0.04 

I0,OOC 

a, R 
1000 

100 

4 
in -= 

I = 8  
I = ?  
1 = 6  
I -= 5 
I 4 
I -.3 
I :- 2 

I I , X l - ,  1 
30,000 10,000 3,000 1000 300 

FIGURE 5 .  The change of (a )  the non-dimensional wave-speed c = P/ar, and (71) the non- 
dimensional spatial damping rate, a, R, with the non-dimensional frequency PR = 2nfu2/v 
for various modes. 

(iii) A significant feature of figure 5 is that damping rates decrease as the 
non-dimensional frequency PR decreases, the smallest damping rate being 

given by (6.23), that is aiR z 33.1. 

Thus there is a zero-frequency disturbance whose amplitude does not fall to half 
its original amplitude until a distance of about RjlOO diameters downstream of 
its source, that is a distance of about 10 diameters at a Reynolds number of 1000, 
and a distance of about 100 diameters a t  a Reynolds number of 10,000. Hence if 
the mean flow is distorted in some way at these high Reynolds numbers, it  will 
stay distorted for a long distance downstream so that if the distorted profile is 
unstable, fluctuating disturbances will have a good chance to grow to a significant 
level before the mean flow becomes stable again. This seems to happen in some 
other experiments of Leite (1956) reported also by Kuethe (1956), in which 
disturbances to the flow in the pipe were produced by a circular airfoil. The 
Reynolds number of the flow was 12,000. From figure 2 of Kuethe’s paper it is 
seen that the distortion of the mean flow from the Poiseuille profile remained at 
about the same amplitude €or the first ten diameters, during which distance the 
fluctuating disturbance grew from a very small amplitude to an amplitude of 
the same order as the distortion of the mean flow. Beyond that point the flow 
changed in character and eventually approached a fully turbulent state. 
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